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An accurate and efficient method for the numerical computation of boundary layer flows 
is developed. The finite-difference approximation of the differential equation uses the grid 
point values of the function and of the first derivative. In order to obtain the finite-difference 
schemes of higher order the collocation method of Falk is applied with Hermitian inter- 
polating polynomials. This results in a system of finite-difference equations for the unknown 
function and first derivative. The equations are solved by means of a Gaussian elimination 
procedure. In order to verify the accuracy and efficiency of this finite-difference method of 
Hermitian type an ordinary differential equation of second order is solved as a test example. 
Then this technique is applied to equations of boundary layer flows, in particular to the 
Falkner-Skan equation and to Howarth’s retarded flow. Numerical results are presented 
for each test example. Comparisons with results of other authors indicate a gain in accuracy 
for the finite-difference method of Hermitian type. 

1. INTR~DuC~~N 

Various numerical techniques have been developed for the computation of boundary 
layer flows. In order to generate accurate results even for complex flows, e.g., a 
turbulent chemical reacting flow, ordinary second order methods have to use a high 
number of grid points and, thus, become less efficient. Hence, higher order methods 
are required. 

The concept of the ordinary finite-difference method aims at replacing all derivatives 
by the corresponding difference quotients. Keeping the mesh spacing constant the 
accuracy increases if finite-difference expressions of higher order are used for the 
replacement of all derivatives. In general, however, each of these resulting finite- 
difference equations involve a greater number of unknown variables. Yet without 
increasing the number of unknown variables in the finite-difference equations a 
greater accuracy is obtained by applying the Hermitian finite-difference method [l]. 
This method makes use of the finite-difference approximation of the differential 
equation given by a Taylor series expansion, at several grid points. A different 
approach of setting up the Hermitian finite-difference equations applies the collocation 
method by Falk [2]. For the general case of ordinary differential equations of second 
order Zurmiihl [3] has derived Hermitian finite-difference expressions by the collo- 
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ACCURATE FD-METHOD OF HERMITIAN TYPE 139 

cation method whereby the function is approximated by Lagrange’s interpolation 
formulas. 

Additionally, the truncation error of the finite-difference expression can be reduced 
by replacing the higher order derivatives by the grid point values of the function and 
of the first, the second, etc., derivatives. Such expressions follow from Hermite’s 
generalization of Taylor’s formulas. Here, the finite-difference approximation of the 
differential equation is obtained by the collocation method [2] which is simple to 
handle and requires no special previous knowledge. The approximation is based 
upon Hermite’s interpolation formulas. In addition to the grid point values of the 
function as in the case of the Lagrangian interpolation formulas, the finite equations 
involve the grid point values of the derivatives. Therefore, the derived method is 
called “finite-difference method of Hermitian type,” abbreviated FMH. 

To illustrate what is outlined above the system of finite-difference equations for an 
ordinary differential equation of second order is set up by the FMH. Furthermore, a 
Gaussian elimination procedure is given for the direct solution of the system of these 
equations. A linear second order differential equation is solved as an example. With 
respect to the accuracy and the computation time the numerical results are compared 
with those obtained by known second and fourth order methods. The main purpose 
of the paper presented is to demonstrate the numerical virtues of accuracy and 
efficiency by means of applying FMH to similar and nonsimilar boundary layer flows. 
The advantage of the FMH is illustrated by the solution of the Falkner-Skan equation 
for various pressure-gradient parameters, for blowing and suction at the wall, and for 
flows with surface curvature. The application to more general boundary layer flows is 
demonstrated, in particular for Howarth’s retarded flow. 

2. THE FINITE-DIFFERENCE SCHEMES OF HERMITIAN TYPE 
USING THE COLLOCATION METHOD 

Consider an ordinary linear differential equation (ODE) of second order 

ay” + by’ + cy = r (1) 

with the boundary conditions 

Y(Xl> = Yl, @a) 

Y'cd = Y'M 3 (2b) 

where y, , Y’~ are given boundary values and the coefficients of the ODE LI, b, c and r 
depend on x. The dash denotes differentiation of the function with respect to the 
independent variable x. The interval [x1 , x,+,1 is divided into a uniform mesh with 
mesh spacing h = (x,+, - x,)/(&I - l), where M is the number of grid points xi 
(j = I,..., M). 

For the numerical solution of equation (1) with a = 1 and b = 0, finite-difference 
expressions of fourth order have been developed by Collatz [l] employing the three 
point Mehrstellen method (Hermitian finite-difference method). These Hermitian 
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finite-difference expressions can also be constructed with the collocation method of 
Falk [2]. Approximating the solution of Eq. (1) between three grid points with a 
fourth order polynomial, Zurmtihl [3] has obtained the Hermitian finite-difference 
expressions using Falk’s method. The Hermitian finite-difference procedure of 
Zurmtihl has been applied by Peters [4] to boundary layer calculations. Another 
approach in constructing the Hermitian finite-difference approximations to equation 
(1) is the Mehrstellen procedure of Krause [5], which is based upon Taylor series 
expansions. In addition to the method of Zurmiihl the Mehrstellen procedure does 
provide the truncation error of the Hermitian finite-difference expressions, but the 
derivation is more complicated. Therefore, the finite-difference method of Hermitian 
type described below is obtained by applying the collocation method of Falk with 
Hermitian interpolating polynomials. This procedure differs from those employed 
by Zurmiihl using Lagrangian interpolating polynomials. 

According to Falk [2] we consider the approximation to the differential equation 
of the form 

Y(X) M Y(x) = S(x) + P(x) Z(x). (3) 

The finite-difference expressions of Hermitian type for the numerical solution of 
equation (1) may be constructed by the collocation procedure using polynomials. 
Here, the Hermitian interpolating polynomial of first order between the three grid 
points xjpl , xj and xi+r is used for the function S 

The Hermitian function H and K are polynomials of fifth order which satisfy the 
conditions 

fWj+z) = I:, 
for 1 = k 
for , + k; H’12(~j+J = 0 for all 1, 

&(X~,Z) = 0 for all I, (1 K’d%+J = )o 
for I = k, 
for 1 # k. 

With the abbreviation t = (x - x,)/h the polynomials read 

Hjwl = t2 - ; t3 - ; t4 + ; t5, 

Hj = 1 - 2t2 + t4, 

H,,, = t2 + ; 13 - ; t4 - ; t5, 

I& = $ (t2 - t3 - t4 + t5), 

Kf = h(t - 213 + P), 

Kj,, = a (-t2 - t3 + t4 + t”). 

(5) 

(6) 

(74 

(W 

(7c) 

(84 

(W 

(84 
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The function P in Eq. (3) is defined as 

P(x) = (x - xj-1)2(x - Xj)“(X - x5+1)2 (9) 

such that for any arbitrary function 2 the grid point values of Yj and Sj as well as 
of Yj and Sfj are the same. In the general case the function 2 contains a number of 
freely chosen coefficients depending on the number of the finite-difference equations 
for the unknown grid point values of the function and of the first derivative. For the 
example chosen we put 

Z(x) = a. (10) 

By differentiation of Eq. (4) the following finite-difference expressions of Hermitian 
type are obtained at each grid point 

S& = & (-23S,-, + 16S, + 7S,+,) - ; (6&L, + 8s; 4 S;+,) + TEibl , (114 

‘y = ; (‘%-l - 2sj + sj+a + & (A!?-, - s,+l) + TE, , 

sy+l = & (7Sj-1 $ 16Sj - 23Si+J + i (Si-1 + 8s’j + 6L$+J + TEj+l, (114 

where TEjbl , TE, and TE,,, are the truncation errors (see Appendix A). The 
approximation (3) is required to satisfy the differential equation (1) exactly at three 
distinct points (“Collocation”). The points of collocation which, in general, can be 
chosen somewhere within the interval [xjW1 , Xj+l], are taken to be the grid points 
xj-I 7 ~5 and Xj+l . 

X = Xj-1: 

( 23 1 16 7 
G-1 - 2h2 4-l Xi-1 + 2h2 %I& + w aj-lYj+l + (b5-l 

+ (8h4+,) LX = ‘j-1 - TE+1 

+ bj Y’j - & CZ~YI+, + (%‘a,) a: = r, - TE, . 

6 
- aj-l h 1 IT-, 

(124 

Wb) 

7 16 
j$Z %+1&-l + 2h2 aj+l 3 Y + (cr+l - $ aj+l) l 

8 
&+I + z aj+lYL + 5 aj+lY; 

+ (bj+1 + ; a,,) Y;,l f (8h4aj+4 (Y = rj+l - TEj+I . ww 
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The free coefficient (Y is eliminated by multiplying the finite-difference equations at 
the grid points xjel and xj by the factors aj and 4~,-~ , respectively, and subtracting 
one equation from the other. To simplify the representation we choose a = 1, 
b = c = r = 0 in Eq. (1). 

- g G-1 + ; Yj - & Yj+l - ; Yip1 - ; y', + ; yj+l = go yy . . . . (134 

In the same way the elimination of cy from the finite-difference equations at the grid 
points xj and xj+r yields 

- & q-1 f ; yt - g r,,l - ; YiAl + ; y; + ; yj+, - L3; ,;I1 . . . . 
(13b) 

The application of the collocation method of Falk provides a truncation error O(P) 
for the finite-difference equations (13a) and (13b). This will also be shown by the 
numerical results in Section 4. In the general case similar equations are obtained for 
the finite-difference expressions of the differential equation (1). But it is much more 
efficient to perform the elimination numerically. 

For the sake of simplicity, the finite-difference method of Hermitian type was 
applied to a uniform mesh spacing. The extension to nonuniform grids and to 
finite-difference schemes for more than three grid points is described in [6]. 

3. THE SYSTEM OF FINITE-DIFFERENCE EQUATIONS AND ITS SOLUTION 

At each grid point xj the value of the function Yi and the value of the first derivative 
Yj are the unknowns of the derived finite-difference method of Hermitian type. 
For the differential equation (1) with two boundary conditions 2M - 2 finite-difference 
equations are necessary to determine the grid point values Yj and Yj . In order to 
match the number of equations to the number of unknowns, we let 01 = 0 whenj = 2 
in Eq. (10). Thus, collocation at the grid points x1 , x2 and xB leads to the three finite- 
difference equations (12a) till (12~). Correspondingly, there are three equations for 
j = M - I. Further 2M - 8 equations are obtained with use of Eq. (10) for 
j = 3,..., M - 2. 

The system of finite-difference equations can be written in the general form 

AiYj-1 + BiYj’, + CiYj + DiY; + EiYj+l + FiYj+, = Ri 3 j = 2,..., M - 1, 
(14) 

where the index i is 
k = -3, -2, -1 for j = 2, 

i=2j+k with 
i 
k=--2,-l for j = 3,..., M - 2, 
k = 0, 1,2 for j=M-1. 

The coefficients Ai to Ri are the coefficients that appear in Eqs. (IZa) to (12~) for 
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,j = 2 and j = M - 1, i.e., Z = 0, 01 = 0, as well as in Eqs. (13a) and (13b) for 
j = 3,..., M - 2. The coefficient structure of the developed system is shown in Fig. 1 
where the boundary conditions Y, and YIM are incorporated. As the first derivative Y’, 
explicitly appears in the system, the boundary condition ylM requires no finite- 
difference approximation. 

Y Y2 y; Y3 y; Y4 Y; . . YMm3 Tt-3 'M-2 %2 YM-I %-1 54 

61 5 9 5 Fl = Rl-AIYl 

62 5 02 5 F2 = I$-A2Y1 

B3 c3 5 E3 F3 
= R3-A3Yl 

A4 64 C4 D4 E4 F4 
= R4 

A5 E5 t5 9 5 F5 = R 5 

'ZM-6 B2M-6 %M-6 %M-6 E2M-6 'ZM-6 
= 

R2M-6 

AZM-5 B2M-5 'ZM-5 %M-5 E2H-5 F2M-5 = RZM-5 

A2H-4 %-4 'ZH-4 %M-4 E2M-4 = R2U-4-F2M-4Yi 
A 

2M-3 B2M-3 'ZM-3 D2M-3 E2M-3 = R2M-h-F2M-3Ybi 

Am-2 B2M-2 'ZH-2 'ZM-2 E2H-2 = R2M-2-Fm-23, 

FIG. 1. Coefficient structure of the system of finite-difference equations. 

Because of the hepta-diagonal structure the system of finite-difference equations 
can be solved by means of a Gaussian elimination procedure. In order to get the 
recursion formulas the rewritten first finite-difference equation is set into the second 
and third equation. This yields the coefficients 

Zi = W’j,, - Bj+IC, , 

BKj = (&Dj+l - Bj+1DA/Zj 3 

C& = (&Ej+l - Bj+~EI)IZj 3 j= 1,2, 

DJG = (&Fj+l - Bj+lWZj 9 

RKj = (BlRj+, - Bj+lRl)lZj * 

Now, with the help of the second equation Y, is eliminated from the third till the 
fifth equation. The elimination procedure continued up to the (2M - 2)th equation 
the coefficients 

Zj = (CT,+, - A,,+,CKa-s) ZBj-2 
+ (&+3&j-5 - %+A ZCj-z 9 

j = 3,..., M-2; e=-2,-l; m=e-1. 

58x/27/1-10 
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BK2r+m = &+e - &d&-d ZBj-2 
+ (Azj+eB&i-5 - &+A Z&zlZj , 

CK23+W& = E2jJBi-dZj 7 j=M-1; e = -2, -1,O; m = e - I. 

D&i+m = F2j+eZBj-2IZj > 

RK,,, = (&j-w - &+eRKj-5) ZBj-2 

f (Ad%-5 - B,j+e) ZLlZj 

are obtained, where the abbreviations are 

ZBj-2 = BKt+g - BKzj-6 3 

ZCj-2 = CKzj-4 - CKzj-5 7 

ZDj-2 = DKsj-4 - DKzj-5 3 
j = 3,..., M, 

ZRj-2 = RKsj-q - RKz,-, e 

Then, the solution of the system of finite-difference equations reads 

y 
M 

= (R&M--~ - R&,-d ZBM-~ + (B&M-~, - B&M-~ ZBM-2 
(CK,M-, - CK,,,) ZBM-, + (B&M-~ - BKwJ ZBM-2 ’ 

Y’j = (ZRj-1 - Yi+lZCj-l - Yjl+lZDj-1)/ZBj-1) j=M-.I ,*.*, 2, (15) 
Yj = RKzj-2 - Y‘jBKsj-3 - Yj+,CKgj-a - Yjl+lDKzj-3, 

Y’I = (RI - Y,C, - Y’,D, - Y,E, - Y’,F,)/B, . 

4. A COMPARISON OF FINITE-DIFFERENCE METHODS 

In order to compare the efficiency of the finite-difference methods the differential 
equation 

uy” + y’ + y = 1 (16) 

with a = (y’(0) - 1)/y’“(O) is numerically solved as an example [5]. Equation (16) 
has the solution 

y(x) z 1 - e-+(“)s, (17) 

where y’(O) simulates the steep velocity gradient of turbulent boundary layers near 
the wall. In the present investigation the numerical calculations were performed for 
y’(0) = 2 and the interval [0, l] with the boundary conditions given by Eq. (17). 

The criterion for accuracy is the relative maximum of the difference from the 
analytical solution yj of Eq. (17) for all grid points 

E = Max I yj - Yj I 
l<KM Yi ' 



ACCURATE FD-METHOD OF HERMITIAN TYPE 145 

In order to assess the accuracy and the computation time the analytical solution (17) 
of Eq. (16) is compared to three numerical solutions of Eq. (16), by means of 

(I) ordinary finite-difference method (OFM), 0(h2), Ref. [I], 
(II) Hermitian finite-difference method (HFM), 0(h4), Ref. [3], 

(III) finite-difference method of Hermitian type (FMH), 0(h5). 

The programs were written in FORTRAN IV and the numerical calculations were 
run on the CDC 6500 Computer at the Technische Universitat Berlin. Table I 

TABLE I 

Comparison of the Computation Time for the Methods OFM, HFM, and FMH 

Number of 
grid points 

11 
26 
51 

101 
126 
201 

Step size h 

0.1 
0.04 
0.02 
0.01 
0.008 
0.005 

Computation time f (set) 

OFM HFM FMH 

0.006 0.010 0.013 
0.014 0.023 0.034 
0.026 0.045 0.066 
0.052 0.090 0.119 
0.069 0.113 0.155 
0.117 0.178 0.233 

presents the required computation time for the three finite-diffeernce methods. These 
data plotted in Fig. 2 show that for all methods the computation time t rises linearly 
with the number of grid points’M. Furthermore, for example, with M = 101 FMH 
needs about 1.4 times of the computation time of HFM and about 2.1 times of the 
computation time of OFM. This is due to the larger cost in setting up the finite- 
difference equation, and in solving a greater system of finite-difference equations for 
FMH. 

101 151 201 
GRID POINT MMEER M GRID POINT MMEER M 

FIG. 2. Computation time for the finite-difference methods. FIG. 2. Computation time for the finite-difference methods. 
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Figure 3 presents the percentage error E, plotted versus the step size h. For h = 0.01 
the percentage errors are COFM M 10M2%, l HFM M 5.10-‘% and PFMH w lOWa%. 
To achieve a constant error, say E = 2. 1O-3 % for the three finite-difference methods, 
the step sizes are hoFM w 0.0045, hHFM M 0.083 and hFMH w 0.2. A comparison of 
these results shows that the step size hPMH is about twice as large as hHFM and forty 
times as large as hoFM . The number of required grid points is MoFM = 223, 
MHFM = 13 and MFMH = 6, respectively. This leads to a high reduction in grid 
points for the derived FMH. 

Despite a higher computation time the high accuracy of FMH provides a remarkable 
overall advantage. This will be demonstrated as follows. For the above mentioned 
example the computation time obtained by means of interpolation in Fig. 3 gives 
tOFM = 0.13 set, tHFM w 0.011 set and tFMH * 0.006 sec. In comparison, the 
computation time of FMH decreases by a factor of two for HFM and by a factor of 
twenty for OFM. 

In spite of the fourth order approximation near the boundaries (j = 2 and 
j = M - 1) the overall order of the scheme is not effected. The slope of the error 

uo2 001 01 
STEP SIZE h 

02 

FIG. 3. Errors of the numerical solution. 
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curves in Fig. 3 demonstrates that the truncation error of the FMH still is fifth order 
accurate. In order to show the effect of the new interpolation the calculations have also 
been performed for the FMH with (Y = 0 in Eq. (10) everywhere. As predicted by 
Eq. (11) the order of the truncation error is 4, as for the HFM. Hence, the collocation 
method of Falk [2] yields a reduction of the truncation error. The FHM may be 
significantly improved by using more accurate 4-point approximations [6] near the 
boundaries (j = 2 and j = M - 2) 

Y?r-, = & (-97Y,h1 + 81 Yj+l + 16Y,+z) 

1 + a (-22 Yj-, - 54y; - 27Yi;I - 2 rj;,) + 72hh, 

Y; = & (56Yjw1 - 297Yj + 216Yj+l + 25Yj+z) 

1 + a (2Y;-, - 18r; - 18Y;+, - Yj+2) + 8h%, 

Yjn+l = $ (25y,T1 + 216Y, - 297yj+l + 56yi+J 

+ & (rj-, + 18Yj + 18Y;+, - 2Y,+J + 8/z%, 

Y;+2 = & (16Y,-, + 81Yj - 97y,+J 

+ & (2Y;-, + 27Y’j + 54Y;+, + 22Y;+,) + 72h%. 

(184 

By collocation at four points the additional unknown ill is eliminated so that three 
finite-difference equations of Hermitian type remain. Applying Eq. (18) the overall 
order of the scheme is 6, as the slope of the curve shows. 

5. THE FALKNER-SKAN EQUATION 

Similarity solutions of boundary layers are of great interest for getting information 
about the behavior of boundary layer phenomena. For two-dimensional flows the 
incompressible laminar boundary layer equations can be reduced to 

f” +.fr + kw - (f’N = 0 

with the boundary conditions 
(19) 

?j = 0: j-=-K, f’=O, (204 
?)--+ 03: f’- 1, @W 

where primes denote the differentiation with respect to 7. 
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In the case K = 0 the well-known Falkner-Skan equation is obtained. In practice 
results were required for the pressure-gradient parameter in the range of -0.19884 < 
fl < 2, where /zI > 0 means accelerating, p = 0 constant and p < 0 decelerating 
flows. In the Falkner-Skan problem with mass transfer [7] positive values of Kindicate 
“blowing” or fluid injections, while negative values indicate “suction” or mass transfer 
to the wall. 

The application of FMH to nonlinear ordinary differential equations of third order 
such as equation (19) does not pose any problems. The finite-difference expressions 
are obtained from the differentiated equation (5) with x = 71 and h = rl~ 

s.2 = 245 -!-- (99Sjdl - 48S, - 51S,+l) + hr (39Si-, + 96Sj + 15Sj+1), (21a) 

S; = &+ (- 15,!& + 15S,+,) - TA$ (3S;-, + 24Sj + 3S;+J, @lb) 

s;+, = & (51S+, + 48S, - 99Sj+l) + & (15&r + 96Sj + 39S;+,), (21~) 

and Eq. (9) 

P;:, = -72A~j~, Pj” = 0, P& = 72Aq3. (22) 

Starting from Eq. (1) whose coefficients are chosen as aj = fj , bi = -fij’j , Cj = 0 
and yj = -/I the terms of the third derivatives (4) at the grid point xi-r , xj and x~+~ 
are added to the corresponding equations (12a) till (12~) 

;li+kh-1 + Bjfkfi--l + cj+-lcJ;. + Di+J’j + El+khfl + Fj+kf;+l + Gjj,lP = Ri+k 7 

where 

Bj-1 

k = -l,O, 1, (2 3) 

99 
___ 

2Aq3 

39 --Bf:-l--+l, Bj=++&L 2Aq2 
- 
&+I = & + ;<h+, ; 

24 , 8 r F 4 1‘ 
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Bj-, 

Ej-1 

P 

= 

a,,, = +2+-&h+l; 

rj-1 = --I 
2Aq2 4 Jj-l ’ rj=-2dr12-- 2Arl ‘j ’ 

- 39 
Fi+l = 242 - - Pfsf;,l + g/,+1 ; 

Gjml = 847& - 72Aq3, Gj = 2A74f;: 9 
Gj,, = 84x+1 + 7243; 

Rj-1 = -& Rj = -p, 

Rj+l = -p* 

As described in Section 2, the elimination of the parameter (Y at the grid points 
j = 2,..., h4 - 2 which is performed numerically leads to higher order expressions 
for the Falkner-Skan equation (19). Because of the lengthiness these equations are 
not written out. For j = M - 1 Eqs. (23) are applied with cy = 0. As f’l = 0 is the 
known boundary condition the first (i = 1) of the finite-difference equations in (14) 
will not be used. Apart from this boundary condition, the coefficient structure of the 
system of finite-difference equations is the same as shown in Fig. 1. Thus, the solution 
procedure described in Section 3 may also be applied to differential equations of third 
order. In order to obtain a system of linear finite-difference equations the differential 
equation (19) must be linearized. Assuming an initial guess for fi and f ‘j the linear- 
ization is performed by using the Newton-Raphson procedure (see e.g. [S]). The 
iteration cycle is repeated until two consecutive solutions of f’j differ by less than a 
chosen error E. For all calculations a linear velocity profile is simply assumed for the 
initial values Of’j from which Of is obtained by integration. The convergence criterion 
is E = 1 “+lf’j - ““9 1 < 10e6 at all grid points xj , which will also be used for all 
calculation in this paper. 

In boundary layer calculation the shear on the wall is of great interest. This most 
sensitive quantity is determined from LP~(O)/&~ = fz given by equation (1 la) with 
the truncation error O(Aq4). Thus, only f L is compared with the results of other 
numerical methods which have been developed for the solution of the Falkner-Skan 
equation. 

The classical Blasius equation is obtained for the pressure-gradient parameter 
j3 = 0. In Table II the calculated values off: are compared with the best methods 
available, the Keller and Cebeci box scheme [9] with second order accuracy and the 
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TABLE II 

Comparison of Calculated Values off: for Blasius Flow 

Present Number of Kreiss Box 
4 FMH iterations (Ref. [lo]) (Ref. t91) 

1.0 0.454130 6 0.430834 0.506065 

0.8 0.466982 6 

0.5 0.469453 6 0.465713 0.478914 

0.4 0.469558 6 0.468430 

0.333 0.469584 6 0.413153 . 

0.3 0.469591 6 0.46938 1 

0.2 0.469601 9 0.469582 

0.1 0.469599 0.469915 

0.05 0.469694 
__- 

O-extrapolated 0.469601 

Kreiss method [IO] with fourth order accuracy. The Kreiss method is of the same order 
as the Hermitian finite-difference method [3] cited in Section 4. An accuracy to five 
decimal places is achieved by FMH with 47 = 0.2 whereas the Kreiss method obtains 
this result with LIT = 0.1 and the box method by means of an extrapolation. For all 
comparable mesh spacing, e.g., dy = 0.5, the FMH gives more accurate (third 
decimal place) results than the box method and even than the fourth order Kreiss 
method. No difficulties arise from the nonlinearities as the Newton-Raphson 
procedure converges for all values of dq within few iterations. 

Table III presents the results for accelerating and decelerating flows. For nearly 
all values of the pressure-parameter /3 the values of fz , calculated by FMH with 
47 = 0.1, agree in six significant digits with the findings of Smith [ll]. The dis- 
agreement in the results of Cebeci and Keller [12] is in the sixth decimal place and 
probably due to the single precision arithmetic used. Even for crude mesh spacing 
of 4~ = 0.4, FMH gives a third till fourth decimal place accuracy depending on /3. 

For boundary layer flows with mass transfer the usual nomenclature as in Ref. [7] 
is used. The mass transfer parameter is given by 

K = u,[(2 - /$X/VU(X)]“” 

with j3 < 2 where u, is the rate of mass transfer at the wedge surface. Calculations 
have been made for various values of /!l and K. In Table IV some of these results are 
shown together with the values obtained by Tan and Di Biano [13] and Elzy and 
Sisson [14]. In the parametric differention method of Ref. [13] the pressure-gradient 
parameter j3 or the mass transfer parameter K are to be chosen as the parameter. 
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TABLE III 

Comparison of Calculated Values of fi for Accelerating and Decelerating Flows 

Present FMH 

B A7j = 0.1 AT = 0.4 Ref. 1121 Ref. [ll] 

-0.195 0.055171 0.055158 0.055177 0.055172 

-0.19 0.085701 0.085705 0.085702 0.085700 

-0.10 0.319270 0.319275 0.319278 0.319270 

-0.05 0.400323 0.400305 0.400330 0.400323 

0.10 0.587035 0.586952 0.587037 0.587035 

0.20 0.686708 0.686603 0.686711 0.686708 

0.40 0.854421 0.854336 0.854423 0.854421 

0.80 1.120269 1.120437 1.120269 1.120268 

1 .oo 1.232589 1.232938 1.232561 1.232588 

1.20 1.335725 1.336247 1.335724 1.335772 

1.60 1.521524 1.522254 1.521516 1.521514 

TABLE IV 

Comparison of Calculated Values of fi for Blowing and Suction 

Present FMH 

B K AT = 0.1 Ar) = 0.4 Ref. [13] Ref. [14] 

0 -2 2.194486 2.197200 2.1945 2.1945 
-1 1.283631 1.283757 1.2836 1.2836 

0.4 0.204860 0.204918 0.2048 0.2048 

0.8 0.017474 0.017473 0.0174 0.0174 

0.5 -2 2.450992 2.450812 2.4512 2.3410 

-1 1.624196 1.624488 1.6246 1.6241 
0.4 0.707727 0.707667 0.7087 0.7077 

0.8 0.531357 0.531332 0.5323 0.5313 

1.0 -2 2.670041 2.665105 2.6703 2.6700 
-1 1.889318 1.888862 1.8898 1.8893 

0.4 1.017943 1.018144 1.0188 1.0179 

0.8 0.835431 0.835504 0.8362 0.8354 
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The calculations in Ref. [14] were performed with the multiple-step predictor- 
corrector type numerical integration formulas. Compared with the values of f: 
calculated by the FMH with dq = 0.1, the agreement with the results of Elzy and 
Sisson is very good. Again, the farily large step size of dv = 0.4 gives results which 
agree to three significant digits, at least. 

6. SIMILAR SOLUTIONS OF THE EXTENDED FALKNER-SKAN 
EQUATION WITH SURFACE CURVATURE 

The well-known Prandtl boundary layer equations do not take into account second 
order effects such as the surface curvature. Various papers have been published to 
solve the equations for a laminar incompressible boundary layer on a curved surface. 

Murphy [15] was one of the first who discussed the surface curvature effects. In his 
investigations the Falkner-Skan equation was extended to flows over curved surfaces 
yielding similar solutions. Using his nomenclature the following fourth order differen- 
tial equation is obtained by 

f’” + Qf”’ +ff” + Qff” - y[f’f” + Qn(f’)“l = 0 (24) 

with the boundary conditions 

T,J = 0: f ==o, f’ = 0, (254 
?1 + *: f’ 4 .yDn, f’ + -Qe-av. (25b) 

The flow over curved surfaces depends on the curvature parameter Q and the 
parameter y which is related to the pressure-gradient parameter /3 by y = 2/3 - 1. 

In most cases reported the numerical solution of Eq. (24) is obtained by a so-called 
shooting method using the Runge-Kutta step-by-step integral formulas. One difficulty 
in applying this method arises from the fact that initial estimates of both, f”(0) and 
f “‘(0) have to be made. Another difficulty is that the initial estimates must only differ 
little from the exact values to assure convergence of the shooting method. These 
difficulties can be eliminated entirely by the application of the FMH to fourth order 
differential equations as it is illustrated below. 

The finite-difference expressions for the fourth derivatives are obtained from the 
differentiated equation (5) 

S,!Yl = & (-102Sj-l + 24S, + 7&S,,,) - + (36S:-, + 12Os’j +- 24&+,), 
(264 

s,r” Z & (-12Sj-, + 24Sj - 12Sj+r) + ;F (--6Si-i + 6Si+-3, 

s,l,“* = & (7gSj-1 $- 24X, - 102Sj,r) + & (24Sj-1 + 12Os’j + 36Si+l), (26~) 
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and Eq. (9) 

P;yl = 312A$, P;” = -48A$, P$ = 3124~~. (27) 

The finite-difference expressions of Eq. (24) are derived in the same way as those in 
Section 5 for a third order differential equation. However, the elimination of the 
parameter 01 in these expressions is accomplished at all inner grid points j = 2,..., 
A4 - 1. The missing finite-difference equation of higher order, that is the (2M - 3)rd 
equation, is given by the boundary conditionf”(7 -+ a) = -LA+‘* using Eq. (11~) 
forj = M- 1. 

The system of finite-difference equations has the same coefficient structure as that 
for the Falkner-Skan equation in Section 5. Thus the recursion procedure for solving 
the equations can be applied. The numerical calculations indicate that no difficulties 
arise from the solution of Eq. (24) by the FMH and that, for this nonlinear problem, 
convergence is always obtained. 

Table V presents the FMH-calculated values off”, and a comparison of values for 
the nondimensional displacement thickness 

A+ = srn (1 - -&j c+ 
0 

TABLE V 

Calculated Values off: for Flows with Surface Curvature and Comparison 
of Integral Characteristic 

B 52 

1 0.1 
1 0 
1 -0.1 
0.5 0.1 
0.5 0 
0.5 -0.1 
0.2 0.1 
0.2 0 
0.2 -0.1 
0 0.1 
0 0 
0 -0.1 

-0.1 0.1 
-0.1 0 
-0.1 -0.1 

Present FMH 

f: 

Aq = 0.1 AT = 0.4 Avj = 0.1 AT = 0.4 

A+ 

1.06760 1.06800 0.73853 0.73849 0.7386 
1.23259 1.23311 0.64790 0.64781 0.6479 
1.39076 1.39135 0.58034 0.58039 0.5799 
0.777417 0.777359 0.93423 0.9343 1 0.9342 
0.927679 0.927599 0.80455 0.80461 0.8045 
1.07229 1.07195 0.71100 0.71169 0.7104 
0.556090 0.556002 1.16040 1.16045 1.1604 
0.686710 0.686571 0.98416 0.98422 0.9842 
0.813270 0.808968 0.86066 0.87143 0.8606 
0.367084 0.367074 1.45246 1.45245 1.4524 
0.467603 0.469585 1.21678 1.21676 1.2168 
0.569485 0.573245 1.05353 1.04758 1.0537 
0.245411 0.245445 1.73090 1.73081 1.7282 
0.319269 0.319343 1.44270 1.44258 1.4427 
0.390187 0.396656 1.25168 1.23700 1.2516 
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calculated by a fourth order integration formula. For flows without pressure-gradient 
(J3 = 0) and without surface curvature (Q = 0), the fourth order differential 
equation (24) reduces to the Falkner-Skan equation (19). In this case the solution 
procedure by the FMH generates the same accuracy in five significant digits compared 
with the results in Table II’. Again, for a comparatively large step size, such as 
417 = 0.4 the agreement off: is very good, which is due to the high accuracy of the 
FMH even for differential equations of fourth order. For ,417 = 0.1 the values of d+ 
differ only in the fourth significant digit from those of Murphy [15] obtained by the 
shooting method. Except for concave surfaces (52 < 0) the same accuracy is also 
achieved for a larger &spacing (do = 0.4). 

7. THE BOUNDARY LAYER EQUATIONS 

In the previous sections the application of the FMH was illustrated for boundary 
value problems of ordinary differential equations up to the fourth order. The general 
boundary layer equations, however, are an excellent example for numerical checks on 
parabolic partial differential equations. Using the notation of Cebeci and Smith [16] 
by introducing the Levy-Lees transformation 

and the dimensionless stream function f([, 7) = Y(x, y)/(2@‘/” the boundary layer 
equations can be written as 

f” + fjc” + /3([)[1 - (f’)2] = 2.$ [f’ g - f” 51. 

Here 8flaq is represented by f’, etc., /3(t) = (251~3 du,/df is the pressure-gradient 
parameter and u, is the external velocity. The boundary conditions for flow without 
mass transfer at the wall become 

-7.j = 0: f(& 0) = 0, .f’O, 0) = 0, (294 
17 4 0: .m, %I) = 1. (29b) 

The numerical solution of the parabolic equation (28) with the FMH is obtained 
in the usual way of replacing the e derivatives by finite-differences [ 171. The grid point 
locations used are qj where 71 = 0 and j = 1,2,..., M and ti where [I = 0 and 
i = 1, 2,..., N. At the station & the derivatives (af’/a& and (afl@), are approximated 
by the finite-difference Lagrangian formula 

aF ( > -vi 
= LiFi -I- L,-,F,-, + Li-,F,,, (30) 
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The derivatives are of first order for two points with 

Li = & 1 tie1 ’ L&l = & 2$-, ’ 

and of second order for three points with 

Li-2 = 0 (304 

As the values offi-, , fie2 , fivl , and fiM2 have been determined at previous stations, 
all other quantities of Eq. (28) are evaluated at .$# . The result of this fully implicit 
method is an ordinary differential equation with the independent variable f at 
station & . Thus, Eq. (28) reads: 

f” + [f + %%w + L1.L + L2&2>1 f” - EB + %um2 

= -fi + 2@‘(L&J;-1 + Li-2fk-2). (31) 

Here the coefficients Li , Livl and Li-2 are given by Eq. (30b) except at e2 where the 
coefficients (30a) are used. At .& = 0, Eq. (31) reduces to the Falkner-Skan 
equation (19), the solution of which is described in Section 5. 

The method described here was already successfully applied to calculate the most 
complex flow field of turbulent diffusion flames [18], where chemical reactions take 
place. These investigations have shown that the FMH generates numerical results of 
good accuracy even for a relatively crude &-spacing. Thus, quite satisfactory calcu- 
lations were accomplished, as will be demonstrated below. 

One of the boundary layer flows which has been treated extensively [9,10,16,19-211 
is the Howarth’s retarded flow [22] with U,(X) = 1 - x/S. This problem will be 
employed as a convenient check of numerical solutions. As Keller and Cebeci [9] 
have published several tables of their results, the same grid point spacing is used in the 
present investigation, but with larger values of rim , 

1 2 3 4 5 6 7 8 9 

& 0 0.4 0.7 0.8 0.86 0.894 
fqj 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

The nets N,,, for which each &interval or T-interval is subdivided into (r + 1) or 
(S + 1) equal subintervals, respectively, contains (5r + 6)(8s + 9) points. 

Howarth’s problem was calculated by the author for various grid sizes, but only 
for 47 = 0.2 the results off: are tabulated in Table VI. As is shown in Table II 
a smaller step size L3n does not substantially improve the accuracy. The results of 
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TABLE VI 
Comparison of Calculated Values off, for Howarth’s Retarded Flow 

En N 0.4 

Present FMH 

N 9.1 N 19.4 
N (9; 9, 19) 
(Ref. [91) 

0 0.469599 0.469599 0.469599 0.469601 
0.4 0.345649 0.345893 0.345957 0.345941 
0.7 0.206059 0.206881 0.207115 0.207143 
0.8 0.137691 0.138876 0.139218 0.13924 
0.86 0.083838 0.082268 0.082805 0.08286 
0.894 0.021114 0.028728 0.030239 0.030531 

Points 1066 2091 4141 9282 

Table VI clearly demonstrate, how the accuracy is influenced by a variation of the 
step size de. Comparison is made with excellent values computed by Keller and 
Cebeci [9] using the Richardson extrapolation. For the crude LIE net iV4,* the values 
off”, differ from the results in the column N (9; 9,19) for increasing [. The agreement 
becomes better for the more refined net NB,4 . Reducing the step size further, as for the 
net N1B,4, generates at least a four-decimal-place accuracy, but only half of the grid 
points are needed compared with Ref. [9]. 

One of the most significant quantities of boundary layer flows is the point of 
separation. The calculations performed using the FMH encountered no difficulty, 
even extremely close to the point of separation Esei, . Table VII shows the f: = O- 
extrapolated values of tsep for three different nets checked against known results of 
other authors. The agreement is very good except for the net N4,4 with a crude step 
size A.$. 

TABLE VII 
Calculated Position of the Separation Point in Howarth’s Retarded Flow 

Author 

Present FMH 
N 4,4 
N 9.4 
N 19.1 

Rosenhead WI 
Hirsh t101 
Keller and Cebeci [9] 
Hartree 1201 
Smith and Clutter [19] 

6 SC* 
-~~-- ____ 

0.956998 
0.958738 
0.958865 
0.958504 
0.958544 
0.958800 
0.9589 
0.9600 
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8. CONCLUSIONS 

Using the collocation method of Falk with Hermitian interpolating polynomials 
the finite-difference method of Hermitian type was derived. The resulting system of 
finite-difference equations can be solved by a Gaussian elimination procedure. As the 
first derivative appears explicitly in the finite-difference scheme boundary conditions 
of first and second order might be used without a loss of accuracy. The application to 
boundary layer flows indicates an improvement of the accuracy and efficiency 
compared with known second and even fourth order methods. Thus, the finite- 
difference method of Hermitian type is of advantage for problems where other 
methods achieve accurate results only by means of a high number of grid points and, 
hence, requiring “high” storage and computing time. 

APPENDIX A: TRUNCATION ERROR OF THE FINITE-DIFFERENCE EXPRESSIONS FOR 
THE SECOND DERIVATIVE 

A Taylor series expansion of S(x) yields 

From this equation follows 

Sjml - 2Sj + Sj+l = h2S; + $ h4Siv + $ h’s;’ + $ h*S;‘*l -.-, 

Sj+l - Sj-1 = 2hS’j + & h’s,” + $ h5ST + $ h’S:‘I **. . 

By means of the differentiated equation (A3) 

(S;+l - S,J h = 2h”S; + $ h”S;” + $ h’$” + -$ h*Sy” .‘. 

we obtain from Eq. (A2) for the second derivative at the central grid point xj 

Sjn = 4 (Sj-1 - 2Sj + Sj+J + & (bYi_, - S,‘i.d + TEj , 

where the truncation error is given by 

TE, = &- h4S;’ + && Jf$‘“’ . . . . 

(A% 

G43) 

(A41 

G45) 

646) 
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The following Hermitian finite-difference formulas are derived by Collatz 
(cf. [l, p. 5391): 

s.;-1 - 8s; + s;+, + ; (S(,-1 - s;+,> + $ (SjMl - 2& + sj,l) = & hyy’ . . .) 
(A7) 

Sl,(_l - Sj;, + 4 (7S;-, + 16Yj + 7,~;+~) + g (sjpl - s,+~) = _ & h5qt . . . . 
WI 

Using Eq. (AS) the finite-difference expressions of Hermitian type at the grid points 
xi-1 and x~+~ may be performed from Eqs. (A7) and (AS) by adding and subtracting, 
respectively. 

S;w, = & (-23Sj-, + 16S, + 7Sj+3 - ; (6S;-, + W’, + S:,+3 + TE,, , (A% 

S(i;, = & (7&4 + 16S, - 23&+,) + ; (S;-, + Wj + 6S;,3 + TEj+l . (AlO) 

The truncation errors are of fourth order 

TE,*, = & h4Sy1 f -!- h5$” + & ,$“” .a. . 
630 (Al 1) 
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