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An accurate and efficient method for the numerical computation of boundary layer flows
is developed. The finite-difference approximation of the differential equation uses the grid
point values of the function and of the first derivative. In order to obtain the finite-difference
schemes of higher order the collocation method of Falk is applied with Hermitian inter-
polating polynomials. This results in a system of finite-difference equations for the unknown
function and first derivative. The equations are solved by means of a Gaussian elimination
procedure. In order to verify the accuracy and efficiency of this finite-difference method of
Hermitian type an ordinary differential equation of second order is solved as a test example.
Then this technique is applied to equations of boundary layer flows, in particular to the
Falkner-Skan equation and to Howarth’s retarded flow. Numerical results are presented
for each test example. Comparisons with results of other authors indicate a gain in accuracy
for the finite-difference method of Hermitian type.

1. INTRODUCTION

Various numerical techniques have been developed for the computation of boundary
layer flows. In order to generate accurate results even for complex flows, e.g., a
turbulent chemical reacting flow, ordinary second order methods have to use a high
number of grid points and, thus, become less efficient. Hence, higher order methods
are required.

The concept of the ordinary finite-difference method aims at replacing all derivatives
by the corresponding difference quotients. Keeping the mesh spacing constant the
accuracy increases if finite-difference expressions of higher order are used for the
replacement of all derivatives. In general, however, each of these resulting finite-
difference equations involve a greater number of unknown variables. Yet without
increasing the number of unknown variables in the finite-difference equations a
greater accuracy is obtained by applying the Hermitian finite-difference method [1].
This method makes use of the finite-difference approximation of the differential
equation given by a Taylor series expansion, at several grid points. A different
approach of setting up the Hermitian finite-difference equations applies the collocation
method by Falk [2]. For the general case of ordinary differential equations of second
order Zurmiihl [3] has derived Hermitian finite-difference expressions by the collo-
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ACCURATE FD-METHOD OF HERMITIAN TYPE 139

cation method whereby the function is approximated by Lagrange’s interpolation
formulas.

Additionally, the truncation error of the finite-difference expression can be reduced
by replacing the higher order derivatives by the grid point values of the function and
of the first, the second, etc., derivatives. Such expressions follow from Hermite’s
generalization of Taylor’s formulas. Here, the finite-difference approximation of the
differential equation is obtained by the collocation method [2] which is simple to
handle and requires no special previous knowledge. The approximation is based
upon Hermite’s interpolation formulas. In addition to the grid point values of the
function as in the case of the Lagrangian interpolation formulas, the finite equations
involve the grid point values of the derivatives. Therefore, the derived method is
called “finite-difference method of Hermitian type,” abbreviated FMH.

To illustrate what is outlined above the system of finite-difference equations for an
ordinary differential equation of second order is set up by the FMH. Furthermore, a
Gaussian elimination procedure is given for the direct solution of the system of these
equations. A linear second order differential equation is solved as an example. With
respect to the accuracy and the computation time the numerical results are compared
with those obtained by known second and fourth order methods. The main purpose
of the paper presented is to demonstrate the numerical virtues of accuracy and
efficiency by means of applying FMH to similar and nonsimilar boundary layer flows.
The advantage of the FMH is illustrated by the solution of the Falkner-Skan equation
for various pressure-gradient parameters, for blowing and suction at the wall, and for
flows with surface curvature. The application to more general boundary layer flows is
demonstrated, in particular for Howarth’s retarded flow.

2. THE FINITE-DIFFERENCE SCHEMES OF HERMITIAN TYPE
UsING THE COLLOCATION METHOD

Consider an ordinary linear differential equation (ODE) of second order

@ by ey =1 M
with the boundary conditions

i) = 1, (2a)

V() = Yus (2b)

where y; , ¥'5, are given boundary values and the coefficients of the ODE q, b, ¢ and r
depend on x. The dash denotes differentiation of the function with respect to the
independent variable x. The interval [x; , x,] is divided into a uniform mesh with
mesh spacing A = (xp — x;)/{(M — 1), where M is the number of grid points x;
(=1,.,M).

For the numerical solution of equation (1) with a = 1 and » = 0, finite-difference
expressions of fourth order have been developed by Collatz [1] employing the three
point Mehrstellen method (Hermitian finite-difference method). These Hermitian
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finite-difference expressions can also be constructed with the collocation method of
Falk [2]. Approximating the solution of Eq. (1) between three grid points with a
fourth order polynomial, Zurmiihl [3] has obtained the Hermitian finite-difference
expressions using Falk’s method. The Hermitian finite-difference procedure of
Zurmiihl has been applied by Peters [4] to boundary layer calculations. Another
approach in constructing the Hermitian finite-difference approximations to equation
(1) is the Mehrstellen procedure of Krause [5], which is based upon Taylor series
expansions. In addition to the method of Zurmiihl the Mehrstellen procedure does
provide the truncation error of the Hermitian finite-difference expressions, but the
derivation is more complicated. Therefore, the finite-difference method of Hermitian
type described below is obtained by applying the collocation method of Falk with
Hermitian interpolating polynomials. This procedure differs from those employed
by Zurmiihl using Lagrangian interpolating polynomials.
According to Falk [2] we consider the approximation to the differential equation
of the form
y(x) &~ Y(x) = S(x) + P(x) Z(x). 3

The finite-difference expressions of Hermitian type for the mumerical solution of
equation (1) may be constructed by the collocation procedure using polynomials.
Here, the Hermitian interpolating polynomial of first order between the three grid
points x;_; , x; and x;,, is used for the function .S

SE) = 3 {Hy®) Ssor - Kox) St} + OCH). @

l==1

The Hermitian function H and K are polynomials of fifth order which satisfy the
conditions

for =k,

1 7
HGi) =y o 1o Hibow =0  foralll )
, 1 for 1=k,
Ky(x;) =0  foralll, Kiod=ly  rx 12n  ©

With the abbreviation ¢ = (x — x;)/h the polynomials read

3 1 3
o= 2 L T 43 4 T 45
Hyy =t — 38— 50471 (7a)
H;y=1— 22+ 14, (70)
5 1 3
Hj+1:t2+zt3—§t4——zt5, (7c)
Ky = 02— 8 — 11 4 19, (82)
K; = h(t — 263 + 15), (8b)

Kjsy = g(—ﬂ — 8+ 1t 1), (8¢)
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The function P in Eq. (3) is defined as
P(x) = (x — %,0(x — x(x — x;5,)° ®

such that for any arbitrary function Z the grid point values of Y; and S; as well as
of Y'; and §'; are the same. In the general case the function Z contains a number of
freely chosen coeflicients depending on the number of the finite-difference equations
for the unknown grid point values of the function and of the first derivative. For the
example chosen we put

Z(x) = (10)

By differentiation of Eq. (4) the following finite-difference expressions of Hermitian
type are obtained at each grid point

” 1 1 7 7 7’
STa = 535 (~ 238, + 168, + 7S3) — 1 65/ -+ 85, + S + TE, (1)

. 2 | y
S;‘ = Tz (Sj—l — 28; + Sf+1) + Sj—l - Sj+1) + TE;, (11b)

75 (
” 1 1 ’ 4 2

Si = e (7)1 + 168; — 238;,1) + A (S + 857 + 6870) + TEjy, (11c)

where TE; ,, TE; and TE;,, are the truncation errors (see Appendix A). The

approximation (3) is required to satisfy the differential equation (1) exactly at three

distinct points (“Collocation”). The points of collocation which, in general, can be

chosen somewhere within the interval [x;_,, x;,,], are taken to be the grid points
Xja, X and Xjy; .

X = X;_4:
(662 = 0 @) Yos + g a3 s + (bos = i) Vi
—_ Ega,-_l Y; — %a,-_l i+ Bha; ) a=r_y — TE; ;. (12a)
x = x;
h2 a;Y; 4 + ( hz ) Y+ 5 el an!+1 + 57 o ayYI—l

+ b;Y 4;Yj + Qhay) o = r; — TE; . (12b)

2h
X = Xjuqt

7 16 23
55z Y ¥ia + > GnYi -+ (Cf+1 5 a:f+1) Yin + 7 G+ ¥ia + 7 Gnt

6 ,
+ (b:i+1 +3 ai+1) Yi + Bh%asyq) o = 1y — TEy, . (12¢)
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The free coefficient « is eliminated by multiplying the finite-difference equations at
the grid points x;_, and x; by the factors a; and 4a;_, , respectively, and subtracting
one equation from the other. To simplify the representation we choose a = 1,
b=c=r=0inEq (.

39 24 9 8 .. 8 ., 1, k°
oYt Y gm Y~y Yia— 3 Y44 Y,-H:6—‘30Y,-V”~-. (13a)
In the same way the elimination of « from the finite-difference equations at the grid
points x; and x;., yields

—H

9 24 39 1 , 8 , 8 ,
YJ'—1+EYJ'+E),]'+1:——Y;VH-“.

'_—'zyi—l“}‘-EYf‘“’_ngH—*

2h h 2h h (13b)
The application of the collocation method of Falk provides a truncation error O(#4®)
for the finite-difference equations (13a) and (13b). This will also be shown by the
numerical results in Section 4. In the general case similar equations are obtained for
the finite-difference expressions of the differential equation (1). But it is much more
efficient to perform the elimination numerically.

For the sake of simplicity, the finite-difference method of Hermitian type was
applied to a uniform mesh spacing. The extension to nonuniform grids and to
finite-difference schemes for more than three grid points is described in [6].

3. THE SYSTEM OF FINITE-DIFFERENCE EQUATIONS AND ITS SOLUTION

At each grid point x; the value of the function Y, and the value of the first derivative
Y’; are the unknowns of the derived finite-difference method of Hermitian type.
For the differential equation (1) with two boundary conditions 2M — 2 finite-difference
equations are necessary to determine the grid point values ¥; and Y’;. In order to
match the number of equations to the number of unknowns, we let « = O whenj = 2
in Eq. (10). Thus, collocation at the grid points x, , x, and x, leads to the three finite-
difference equations (12a) till (12¢). Correspondingly, there are three equations for
j =M — 1. Further 2M — 8 equations are obtained with use of Eq. (10) for
j=3., M2

The system of finite-difference equations can be written in the general form

AiYa’—1 + Bz‘Yj,—1 + Cin + DiY,j + EiYa‘+1 + Fin,+1 =R, J=2., M1,
(14)
where the index i is
k= -3, -2, —1 for j=2,
i=2j+k with (k= —2, —1 for j=3,., M — 2,
k=0,1,2 for j=M—1.

The coefficients 4; to R; are the coefficients that appear in Eqs. (12a) to (12¢) for
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j=2andj=M~—1, ie, Z=0, o =0, as well as in Egs. (13a) and (13b) for
j = 3,..., M — 2. The coefficient structure of the developed system is shown in Fig. 1
where the boundary conditions Y, and Y’ are incorporated. As the first derivative ¥';
explicitly appears in the system, the boundary condition Y’ requires no finite-
difference approximation.

Y2 Y Yy v Yo e s w2 e T Y Yy
B &4 b K R = RAY
By & 0, B K = RpAy
By C3 Dy By Fy = RyAghy
A B G D, E F, - R
hs B L5 Dy Eg Fg = R
A6 Bams Cams Oms Fams Foms = Roy-s
Aw-s  Baws Cams Omes Eams Fawes = Roys
Pow-s Boma Cowa oma Fams = R4 Fom-a'h
Az Bz Cowes Pacs Faws = RawarFawaly
Az Bz Sz Oz Bawz = RamzTam-2%

Fic. 1. Coefficient structure of the system of finite-difference equations.

Because of the hepta-diagonal structure the system of finite-difference equations
can be solved by means of a Gaussian elimination procedure. In order to get the
recursion formulas the rewritten first finite-difference equation is set into the second
and third equation. This yields the coeﬁicien;s

_Zz' = Blca'ﬂ - Bi+1C1 »
BK; = (B\Dj,, — ,-+1D1)/Z,~,
CK:‘ = (BlEj+1 - Bf+1E1)/Zj ) Jj=1, 2,
DK:‘ = (B1Fy'+1 - j+1F 1)/Z:i s
RK:‘ = (B1R5+1 - J'+1R1)/Zi .
Now, with the help of the second equation Y, is eliminated from the third till the

fifth equation. The elimination procedure continued up to the (2M — 2)th equation
the coefficients :

Z;' = (Czj+e - A2j+eCK2j-5) ZB,-_2
+ (AgireBKyi 5 — Byine) ZCj s,
j=3..M—-2, e=—=2,—1; m=e¢e~—1.

581f27/1-10
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BKosim = (Dyiye — A2jseDKsi 5) ZB; s
+ (Aoj+eBKsjs — Bajro) ZD; o[ Z; ,
CKyiom = Ey; o ZB; 5]Z;, j=M—1; e=—2,—1,0; m=¢c¢— 1.
DKyivm = Fy4e 2B, 5/ Z;,
RKziim = (Rejpe — A2isoeRKj5) ZB;
+ (Agj1eBK; 5 — Byjie) ZR; o[ Z;
are obtained, where the abbreviations are
ZB;_, = BKy;_ 4, — BK,; 5,
ZC;y = CKy; 4 — CKy 5, )
j= 3., M,
ZD,_, = DKy;_, — DK,;_5,
ZR; 5 = RKy;_4 — RKy; 5.
Then, the solution of the system of finite-difference equations reads

Y, = (RKypi—s — RKypi_s) ZBy_g + (BKons — BKons) ZBy_s
(CKar—s — CKyng_s) ZBry + (BKops — BKops3) ZBuyp’

Yy =(ZRiy — Y;aZCiy — YinZD;))[ZB; 4,

Y; = RKyi_3 — Y';BKy; 3 — Y;11CKyjg — YinnDKys,

Y = (R — Y,C, — YD, — Y,E, — Y 3F)/B;.

j =M — ‘ls--" 2! (15)

4. A CoMPARISON OF FINITE-DIFFERENCE METHODS

In order to compare the efficiency of the finite-difference methods the differential
equation

ay' +y +y=1 (16)

with a = (y'(0) — 1)/y'%(0) is numerically solved as an example [5]. Equation (16)
has the solution
y(x) = 1 — eV 0, am

where y'(0) simulates the steep velocity gradient of turbulent boundary layers near
the wall. In the present investigation the numerical calculations were performed for
y'(0) = 2 and the interval [0, 1] with the boundary conditions given by Eq. (17).

The criterion for accuracy is the relative maximum of the difference from the
analytical solution y; of Eq. (17) for all grid points

]Yi"—yj\.
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In order to assess the accuracy and the computation time the analytical solution (17)
of Eq. (16) is compared to three numerical solutions of Eq. (16), by means of
(I) ordinary finite-difference method (OFM), O(#?), Ref. [1],
(I) Hermitian finite-difference method (HFM), O(h*%), Ref. [3],
(III) finite-difference method of Hermitian type (FMH), O(h%).

The programs were written in FORTRAN 1V and the numerical calculations were
run on the CDC 6500 Computer at the Technische Universitdit Berlin. Table 1

TABLE 1
Comparison of the Computation Time for the Methods OFM, HFM, and FMH

Computation time ¢ (sec)

Number of
grid points Step size & OFM HFM FMH
11 0.1 0.006 0.010 0.013
26 0.04 0.014 0.023 0.034
51 0.02 0.026 0.045 0.066
101 0.01 0.052 0.090 0.119
126 0.008 0.069 0.113 0.155
201 0.005 0.117 0.178 0.233

presents the required computation time for the three finite-diffeernce methods. These
data plotted in Fig. 2 show that for all methods the computation time ¢ rises linearly
with the number of grid points’ M. Furthermore, for example, with M = 101 FMH
needs about 1.4 times of the computation time of HFM and about 2.1 times of the
computation time of OFM. This is due to the larger cost in setting up the finite-

difference equation, and in solving a greater system of finite-difference equations for
FMH.

02 r . —
§o.15 3 1
o
(83
w
@
wor | FMH HFM OFM ]
z
[
005 1
o0 . - ) .
1 51 101 51 201 P35

GRID POINT NUMBER M
Fic. 2. Computation time for the finite-difference methods.
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Figure 3 presents the percentage error e, plotted versus the step size k. For A = 0.01
the percentage errors are eopm =~ 1072%, eypm =~ 5.1077%, and epmu =~ 10799,
To achieve a constant error, say € = 2.10-3 % for the three finite-difference methods,
the step sizes are hopy =~ 0.0045, hypy =~ 0.083 and Apyy =~ 0.2. A comparison of
these results shows that the step size Agyy is about twice as large as hypy and forty
times as large as hopy . The number of required grid points is Mgpy = 223,
Mygm = 13 and Mgpyy = 6, respectively. This leads to a high reduction in grid
points for the derived FMH.

Despite a higher computation time the high accuracy of FMH provides a remarkable
overall advantage. This will be demonstrated as follows. For the above mentioned
example the computation time obtained by means of interpolation in Fig. 3 gives
torm = 0.13 sec, typy =~ 0.011sec and tpyy &~ 0.006 sec. In comparison, the
computation time of FMH decreases by a factor of two for HFM and by a factor of
twenty for OFM.

In spite of the fourth order approximation near the boundaries (j = 2 and
j = M — 1) the overall order of the scheme is not effected. The slope of the error

RELATIVE ERROR €%

FMH with ¢q.{18) naer
the boundaries

STEP SIZE h
FiG. 3. Errors of the numerical solution.
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curves in Fig. 3 demonstrates that the truncation error of the FMH still is fifth order
accurate. In order to show the effect of the new interpolation the calculations have also
been performed for the FMH with « = 0 in Eq. (10) everywhere. As predicted by
Eq. (11) the order of the truncation error is 4, as for the HFM. Hence, the collocation
method of Falk [2] yields a reduction of the truncation error. The FHM may be
significantly improved by using more accurate 4-point approximations [6] near the
boundaries (j = 2andj = M — 2)

L

Vi = g

(=97, + 81Y;y + 16Y;5)
+ 3ih (—22Y]_, — 54Y% — 27Y/,, — 2Y/.p) + T2h%, (18a)
Y; = ?41715 (56Y,_, — 297Y; + 216Y;,, + 25Y;,,)
+ ‘9‘1;1 QY. — 18V, — 18V — Vi) -- 8h%, (18b)
% = i (25¥ieq + 216Y; — 297X,y + 6%,
+ 51}; (Y, + 18Y% + 18Y/., — 2Y/,,) + 8h%, (18¢)
fia = g (16Y, 4 + 817, — 977,..)
+ 3171 QY + 277, + 547,y + 22Y00) + T2H. (18d)
By collocation at four points the additional unknown « is eliminated so that three
finite-difference equations of Hermitian type remain. Applying Eq. (18) the overall
order of the scheme is 6, as the slope of the curve shows.
5. THE FALKNER-SKAN EQUATION
Similarity solutions of boundary layers are of great interest for getting information

about the behavior of boundary layer phenomena. For two-dimensional flows the
incompressible laminar boundary layer equations can be reduced to

"+ B0 = (fPl=0 (19)

with the boundary conditions

=0 f=-—K f =0, (20a)
n—>o: fl—>1, (20b)

where primes denote the differentiation with respect to .

581/27/1-11
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In the case K = 0 the well-known Falkner-Skan equation is obtained. In practice
results were required for the pressure-gradient parameter in the range of —0.19884 <
B < 2, where B > 0 means accelerating, 8 = 0 constant and 8 < 0 decelerating
flows. In the Falkner-Skan problem with mass transfer {7] positive values of K indicate
“blowing” or fluid injections, while negative values indicate “suction” or mass transfer
to the wall.

The application of FMH to nonlinear ordinary differential equations of third order
such as equation (19) does not pose any problems. The finite-difference expressions
are obtained from the differentiated equation (5) with x = » and 4 = dy
S;”_l =

(995, 4 — 488, — 518;,1) + = (3987, + 968", + 158%,), (21a)

243 2A2

S” =

1 , , ,
A 7 (=158, + 158;,) — —2—[7’3 (38j + 24875 + 38,4, (21b)

= A 5 (515,00 + 485, — 995,4) + 575 (1554 + 9657, + 3955.,), (2lo)

and Eq. (9)

Pl = —T244%  Pr=0, Ply=T24n" (22)

J

Starting from Eq. (1) whose coefficients are chosen as a; = f;, b; = —Bf';, ¢; =0

and r; = —P the terms of the third derivatives (4) at the grid point x;_, , x; and x; 4

are added to the corresponding equations (12a) till (12c)

Ajnfier + Biafier + Cowfi + Disaf's + Ejnfina + Fisafina + G = Ry,
k=-—1,0,1, (23)

where

_ 99 23 - 15

AJ’—] = 2A7] 2A1]2 f7—1’ A}' = 241)3 + Anz f; s
- 51 7
App = Pl + mfm ;

= 39 , 6 5

Bi—lzm_ﬁfj—l—’z;iﬁ—la Bj_ 2An2+247’f7a
= 15
B:i+1 2A1} + A,,’ fa+1 >

— 24 -

Ciq = A") + A”’Iz Sis C;=— A"72 i

- 24
CJ'+1 A‘7)3 + Ang f;+1 s
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~ 48 8 = 12 .
Dj—1=z?—zﬁfj—1, Di_'—_A-n?_B]‘j’

!

Dy = pira + Zﬁfjﬂ ;

= 51 - 15
Ei—1: 2A773+2A_’]2f; -1 EJ' 247} +An2ﬁ,
= 99
Ejpp = — U —ﬂ;??fm ;
— 15 1 - 3 i
Ff—1:—2z;)?"2|;ﬁ—1, Ff-"m_mn
Fin = g~ B + 2=
i+1 2A'ﬂ j+1 A J+1 5
G,y = 84yY;., — 72473, G, = 24rnY;,
Gi1 = 840y + 12473
R-i—l = —B’ Ri = —Ba
Ri = —B. '

As described in Section 2, the elimination of the parameter « at the grid points
j=2,.,M — 2 which is performed numerically leads to higher order expressions
for the Falkner-Skan equation (19). Because of the lengthiness these equations are
not written out. For j = M — 1 Eqgs. (23) are applied with « = 0. As f'; = 0 is the
known boundary condition the first (i = 1) of the finite-difference equations in (14)
will not be used. Apart from this boundary condition, the coefficient structure of the
system of finite-difference equations is the same as shown in Fig. 1. Thus, the solution
procedure described in Section 3 may also be applied to differential equations of third
order. In order to obtain a system of linear finite-difference equations the differential
equation (19) must be linearized. Assuming an initial guess for f; and f’; the linear-
ization is performed by using the Newton-Raphson procedure (see e.g. [8]). The
iteration cycle is repeated until two consecutive solutions of f’; differ by less than a
chosen error e. For all calculations a linear velocity profile is simply assumed for the
initial values %’; from which Y%; is obtained by integration. The convergence criterion
is € = | "f", — ¥f"; | < 10~% at all grid points x;, which will also be used for all
calculation in this paper.

In boundary layer calculation the shear on the wall is of great interest. This most
sensitive quantity is determined from 4%/ (0)/dn* = f,, given by equation (11a) with
the truncation error O(d%*). Thus, only f,, is compared with the results of other
numerical methods which have been developed for the solution of the Falkner-Skan
equation.

The classical Blasius equation is obtained for the pressure-gradient parameter
B = 0. In Table II the calculated values of f7, are compared with the best methods
available, the Keller and Cebeci box scheme [9] with second order accuracy and the
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TABLE II
Comparison of Calculated Values of £, for Blasius Flow

Present Number of Kreiss Box

Ay FMH iterations (Ref. [10]) (Ref. 9D
1.0 0.454130 6 0.430834 0.506065
08 0.466982 6
0.5 0.469453 6 0.465713 0.478914
0.4 0.469558 6 0.468430
0.333 0.469584 6 0.473753
0.3 0.469591 6 0.469381
0.2 0.465601 9 0.469582
0.1 0.469599 0.469975
0.05 0.469694
0-extrapolated 0.469601

Kreiss method [10] with fourth order accuracy. The Kreiss method is of the same order
as the Hermitian finite-difference method [3] cited in Section 4. An accuracy to five
decimal places is achieved by FMH with 4n = 0.2 whereas the Kreiss method obtains
this resuit with 4 = 0.1 and the box method by means of an extrapolation. For all
comparable mesh spacing, e.g,, 4n = 0.5, the FMH gives more accurate (third
decimal place) results than the box method and even than the fourth order Kreiss
method. No difficulties arise from the nonlinearities as the Newton-Raphson
procedure converges for all values of 4z within few iterations.

Table 11T presents the results for accelerating and decelerating flows. For nearly
all values of the pressure-parameter S the values of f,, , calculated by FMH with
An = 0.1, agree in six significant digits with the findings of Smith [11}. The dis-
agreement in the results of Cebeci and Keller [12] is in the sixth decimal place and
probably due to the single precision arithmetic used. Even for crude mesh spacing
of 4n = 0.4, FMH gives a third till fourth decimal place accuracy depending on B.

For boundary layer flows with mass transfer the usual nomenclature as in Ref. [7]
is used. The mass transfer parameter is given by

K = 0,2 — UG

with B < 2 where v,, is the rate of mass transfer at the wedge surface. Calculations
have been made for various values of 8 and K. In Table IV some of these results are
shown together with the values obtained by Tan and Di Biano [13] and Elzy and
Sisson [14]. In the parametric differention method of Ref. [13] the pressure-gradient
parameter 8 or the mass transfer parameter K are to be chosen as the parameter.
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TABLE III

Comparison of Calculated Values of f,, for Accelerating and Decelerating Flows

Present FMH
B dn = 0.1 4y =04 Ref. [12] Ref. [11]
—0.195 0.055171 0.055158 0.055177 0.055172
—0.19 0.085701 0.085705 0.085702 0.085700
—0.10 0.319270 0.319275 0.319278 0.319270
—0.05 0.400323 0.400305 0.400330 0.400323
0.10 0.587035 0.586952 0.587037 0.587035
0.20 0.686708 0.686603 0.686711 0.686708
0.40 0.854421 0.854336 0.854423 0.854421
0.80 1.120269 1.120437 1.120269 1.120268
1.00 1.232589 1.232938 1.232561 1.232588
1.20 1.335725 1.336247 1.335724 1.335772
1.60 1.521524 1.522254 1.521516 1.521514
TABLE 1V
Comparison of Calculated Values of f,, for Blowing and Suction
Present FMH
B K 4n = 0.1 dn = 04 Ref, [13] Ref. [14]
0 -2 2.194486 2.197200 2.1945 2.1945
-1 1.283631 1.283757 1.2836 1.2836
04 0.204860 0.204918 0.2048 0.2048
0.8 0.017474 0.017473 0.0174 0.0174
0.5 -2 2.450992 2.450812 2.4512 2.3410
—1 1.624196 1.624488 1.6246 1.6241
04 0.707727 0.707667 0.7087 0.7077
0.8 0.531357 0.531332 0.5323 0.5313
1.0 -2 2.670041 2.665105 2.6703 2.6700
—1 1.889318 1.888862 1.8898 1.8893
04 1.017943 1.018144 1.0188 1.0179
0.8 0.835431 0.835504 0.8362 0.8354
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The calculations in Ref. [14] were performed with the multiple-step predictor-
corrector type numerical integration formulas. Compared with the values of f,
calculated by the FMH with 4% = 0.1, the agreement with the results of Elzy and
Sisson is very good. Again, the farily large step size of Ay = 0.4 gives results which
agree to three significant digits, at least.

6. SIMILAR SOLUTIONS OF THE EXTENDED FALKNER-SKAN
EQUATION WITH SURFACE CURVATURE

The well-known Prandtl boundary layer equations do not take into account second
order effects such as the surface curvature. Various papers have been published to
solve the equations for a laminar incompressible boundary layer on a curved surface.

Murphy [15] was one of the first who discussed the surface curvature effects. In his
investigations the Falkner-Skan equation was extended to flows over curved surfaces
yielding similar solutions. Using his nomenclature the following fourth order differen-
tial equation is obtained by

YA Qf" + 7+ S — Y+ AP =0 (24)

with the boundary conditions
=0 f=0, f =0, (25a)
n— 0 fee 1 — Qe (25b)

The flow over curved surfaces depends on the curvature parameter £ and the
parameter y which is related to the pressure-gradient parameter 8 by y = 28 — 1.

In most cases reported the numerical solution of Eq. (24) is obtained by a so-called
shooting method using the Runge-Kutta step-by-step integral formulas. One difficulty
in applying this method arises from the fact that initial estimates of both, f”(0) and
£"(0) have to be made. Another difficulty is that the initial estimates must only differ
little from the exact values to assure convergence of the shooting method. These
difficulties can be eliminated entirely by the application of the FMH to fourth order
differential equations as it is illustrated below.

The finite-difference expressions for the fourth derivatives are obtained from the
differentiated equation (5)

S;Xl = 14 (—1028,_, + 24S; + 78S;.,) — Z]—g (36S;_, + 1208"; - 2455,0),
4y K (26a)
1 1 ’ ’
S}V = ’an (128, + 248, — 128, + Z;g (—6Si_1 + 65714), (26b)

1 1 , , ,
s, = i (7881 + 248, — 10280 + (248_, + 12087, + 36S..,),  (26¢)
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and Eq. (9)
PN, =3124%%  P}¥ = —484%% P}, = 3124n% Q27

The finite-difference expressions of Eq. (24) are derived in the same way as those in
Section 5 for a third order differential equation. However, the elimination of the
parameter « in these expressions is accomplished at all inner grid points j = 2,...,
M — 1. The missing finite-difference equation of higher order, that is the M — 3)rd
equation, is given by the boundary condition f"(n — ) = —£2e~9" using Eq. (11¢)
forj= M — 1.

The system of finite-difference equations has the same coefficient structure as that
for the Falkner—Skan equation in Section 5. Thus the recursion procedure for solving
the equations can be applied. The numerical calculations indicate that no difficulties
arise from the solution of Eq. (24) by the FMH and that, for this nonlinear problem,
convergence is always obtained.

Table V presents the FMH-calculated values of f;, and a comparison of values for
the nondimensional displacement thickness

a1 L)
TABLE V

Calculated Values of f,, for Flows with Surface Curvature and Comparison
of Integral Characteristic

Present FMH
£ a+
A+
B 0 4y = 0.1 dg = 0.4 dn = 0.1 4y = 0.4 (Ref, [15])
1 0.1 1.06760 1.06800 0.73853 0.73849 0.7386
1 0 1.23259 1.23311 0.64790 0.64781 0.6479
1 —0.1 1.39076 1.39135 0.58034 0.58039 0.5799
0.5 0.1 0.777417 0.777359 0.93423 0.93431 0.9342
0.5 0 0.927679 0.927599 0.80455 0.80461 0.8045
0.5 —0.1 1.07229 1.07195 0.71100 0.71169 0.7104
0.2 0.1 0.556090 0.556002 1.16040 1.16045 1.1604
0.2 0 0.686710 0.686571 0.98416 0.98422 0.9842
0.2 —-0.1 0.813270 0.808968 0.86066 0.87143 0.8606
0 0.1 0.367084 0.367074 1.45246 1.45245 1.4524
0 0 0.467603 0.469585 1.21678 1.21676 1.2168
0 -0.1 0.569485 0.573245 1.05353 1.04758 1.0537
—0.1 0.1 0.245411 0.245445 1.73090 1.73081 1.7282
—0.1 0 0.319269 0.319343 1.44270 1.44258 1.4427

—0.1 —0.1 0.390187 0.396656 1.25168 1.23700 1.2516
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calculated by a fourth order integration formula. For flows without pressure-gradient
(B =0) and without surface curvature (£2 = 0), the fourth order differential
equation (24) reduces to the Falkner-Skan equation (19). In this case the solution
procedur . . - g

An = 0.4 the agreement of f,, is very good, which is due to the high accuracy of the
FMH even for differential equations of fourth order. For 4% = 0.1 the values of 4+
differ only in the fourth significant digit from those of Murphy [15] obtained by the
shooting method. Except for concave surfaces (£2 << 0) the same accuracy is also
achieved for a larger d-spacing (dn = 0.4).

7. THE BOUNDARY LAYER EQUATIONS

In the previous sections the application of the FMH was illustrated for boundary
value problems of ordinary differential equations up to the fourth order. The general
boundary layer equations, however, are an excellent example for numerical checks on
parabolic partial differential equations. Using the notation of Cebeci and Smith [16]
by introducing the Levy-Lees transformation

dé = ppu, dx, dn = pu,JQENE dy

and the dimensionless stream function f(£, n) = Y(x, y)/(2)'/? the boundary layer
equations can be written as

774+ BN — ¢ = 2 [ L - 1 L, 28)

Here 9f/on is represented by f', etc., B(§) = (2¢/u,) du,/dé is the pressure-gradient
parameter and u, is the external velocity. The boundary conditions for flow without
mass transfer at the wall become

=0 f(§,0)=0, f(§0) =0, (29a)
n—> o f(§10) =1 (29b)

The numerical solution of the parabolic equation (28) with the FMH is obtained
in the usual way of replacing the ¢ derivatives by finite-differences [17]. The grid point
locations used are 7; where %, = 0 and j = 1,2,..., M and §; where & = 0 and
i =1, 2,..., N. At the station &, the derivatives (6f'/0§); and (8f/2€); are approximated
by the finite-difference Lagrangian formula

17
(_8%) = LF; + Li—lFi-—l + Lz‘—zF G2 (30)
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The derivatives are of first order for two points with

1 —1

Li=5——, L ,=—5—5—, L ,=0 30
A R A ; (30a)
and of second order for three points with
1 1 —(& — €im9)
Li = . Li_ == s
e T T e — B

30b
& — €y G0
(6 — &iolia — €i0)

As the values of f,_; , fi-s, fi_1, and f;_, have been determined at previous stations,
all other quantities of Eq. (28) are evaluated at £, . The result of this fully implicit
method is an ordinary differential equation with the independent variable f at
station §; . Thus, Eq. (28) reads:

"+ U+ 26Lf + Liafia + Lisfi D) " — [B + 2LY)
= —f + 28f' (Liafia + Liof120). €1))

Li,=

Here the coefficients L, , L, , and L, , are given by Eq. (30b) except at £, where the
coefficients (30a) are used. At & =0, Eq. (31) reduces to the Falkner-Skan
equation (19), the solution of which is described in Section 5.

The method described here was already successfully applied to calculate the most
complex flow field of turbulent diffusion flames [18], where chemical reactions take
place. These investigations have shown that the FMH generates numerical results of
good accuracy even for a relatively crude dvy-spacing. Thus, quite satisfactory calcu-
lations were accomplished, as will be demonstrated below.

One of the boundary layer flows which has been treated extensively [9, 10, 16, 19-21]
is the Howarth’s retarded flow [22] with u,(x) = 1 — x/8. This problem will be
employed as a convenient check of numerical solutions. As Keller and Cebeci [9]
have published several tables of their results, the same grid point spacing is used in the
present investigation, but with larger values of 7., .

1 2 3 4 5 6 7 8 9

¢ 0 04 0.7 0.8 0.86 0.894
N; 0 1.0 20 3.0 4.0 5.0 6.0 7.0 8.0

The nets N, , for which each £-interval or n-interval is subdivided -into (r + 1) or
(s + 1) equal subintervals, respectively, contains (5 + 6)(8s + 9) points.

Howarth’s problem was calculated by the author for various grid sizes, but only
for 4n = 0.2 the results of f,, are tabulated in Table V1. As is shown in Table 1T
a smaller step size 4 does not substantially improve the accuracy. The results of
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TABLE VI
Comparison of Calculated Values of f,, for Howarth’s Retarded Flow

Present FMH
N©9;9,19

€a Nia Ny,q Nis.q (Ref. [9])
0 0.469599 0.469599 0.469599 0.469601
04 0.345649 0.345893 0.345957 0.345941
0.7 0.206059 0.206881 0.207115 0.207143
0.8 0.137691 0.138876 0.139218 0.13924
0.86 0.083838 0.082268 0.082805 0.08286
0.894 0.021114 0.028728 0.030239 0.030531
Points 1066 2091 4141 9282

Table VI clearly demonstrate, how the accuracy is influenced by a variation of the
step size 4¢. Comparison is made with excellent values computed by Keller and
Cebeci [9] using the Richardson extrapolation. For the crude 4¢ net N, , the values
of 7, differ from the results in the column N (9; 9,19) for increasing £. The agreement
becomes better for the more refined net N, , . Reducing the step size further, as for the
net Nyp 4, generates at least a four-decimal-place accuracy, but only half of the grid
points are needed compared with Ref. {9].

One of the most significant quantities of boundary layer flows is the point of
separation. The calculations performed using the FMH encountered no difficulty,
even extremely close to the point of separation £ep . Table VII shows the f,, = 0-
extrapolated values of £ep for three different nets checked against known results of
other authors. The agreement is very good except for the net N, , with a crude step
size 4¢.

TABLE VII
Calculated Position of the Separation Point in Howarth’s Retarded Flow

Author fscp

Present FMH

Ni.a 0.956998

Ny.4 0.958738

Nipa 0.958865
Rosenhead [21] 0.958504
Hirsh [10] 0.958544
Keller and Cebeci {9] 0.958800
Hartree [201 0.9589

Smith and Clutter [19] 0.9600
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8. CONCLUSIONS

Using the collocation method of Falk with Hermitian interpolating polynomials
the finite-difference method of Hermitian type was derived. The resulting system of
finite-difference equations can be solved by a Gaussian elimination procedure. As the
first derivative appears explicitly in the finite-difference scheme boundary conditions
of first and second order might be used without a loss of accuracy. The application to
boundary layer flows indicates an improvement of the accuracy and efficiency
compared with known second and even fourth order methods. Thus, the finite-
difference method of Hermitian type is of advantage for problems where other
methods achieve accurate results only by means of a high number of grid points and,
hence, requiring “high” storage and computing time.

APPENDIX A: TRUNCATION ERROR OF THE FINITE-DIFFERENCE EXPRESSIONS FOR
THE SECOND DERIVATIVE

A Taylor series expansion of S(x) yields

N T A
Sty = 8; £ hS's + 5787 £ 37 5]
h4 h5 hs h7 hB
S S G S S ST (A
From this equation follows
2¢q7 2 4¢lv 2 8cVI 2 8QVIII
Sf_1~2Sj+Sj+1=th+4—!th +—6—!th —k—g—!hS,- SR (A2)
2 2 3o 2 5¢V 2 7QVIL
Sj‘HﬁSj‘l:Zth_l_ﬂth +§Thsl+;7"°hs] . (AS)
By means of the differentiated equation (A3)
' ’ 207 2 4clv 2 eQVI 2 8QVII
(Sj+1—S,-_1)h:=2hS,-+§-!th +5—!th —[—ﬂth (Ad)

we obtain from Eq. (A2) for the second derivative at the central grid point x;
., 2 l o ,
NS e (Sj1 — 28 + Sj) + % (Sia — Sy + TE;, (AS)

where the truncation error is given by

L

1 v
TE; = 365 %S+ To080

BV .. (A6)
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The following Hermitian finite-difference formulas are derived by Collatz
(cf. [L, p. 539)):

7-1 - 8S” + +1 + h (S,fi—l - ]+1) + 2 (S —1 2S] + SJ'-H) 2520 hGSv“I
(A7)
;',—1 - ;+1 h (7SJ__1 - 16S’ + 78 +1) + 2 (SJ : — SJ'+1) — 3_1__ h5sVIl
(A8)

Using Eq. (A5) the finite-difference expressions of Hermitian type at the grid points
X;_; and x;,, may be performed from Egs. (A7) and (AB) by adding and subtracting,
respectively.

” l i’
-1 = g3 (23850 4 165; + 78550) — 7 (65‘] v+ 88+ i) + TEy ., (A9)

" 1 I o ,
1= g (151 -+ 168; — 238;4) + 7 (Sja + 857 + 65550) + TEpya . (A10)

7 (
The truncation errors are of fourth order

1

vn sVl .,
a0 7"+ a0 1S (Al1)

1 agv
WS &30 1680

TEjil = —9‘6
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